Distribuição hipergeométrica: fórmulas, equações, modelo

A distribuição hipergeométrica é uma função estatística discreta, adequada para calcular a probabilidade em experimentos randomizados com dois resultados possíveis.A condição necessária para aplicá-lo é que sejam populações pequenas, nas quais as extrações não sejam substituídas e as probabilidades não sejam constantes.

Portanto, quando um elemento da população é escolhido para conhecer o resultado (verdadeiro ou falso) de uma determinada característica, esse mesmo elemento não pode ser escolhido novamente.

Distribuição hipergeométrica: fórmulas, equações, modelo 1

Figura 1. Em uma população de parafusos como este, certamente existem amostras com defeito. Fonte: Pixabay

Certamente, o próximo elemento escolhido tem, portanto, maior probabilidade de obter um resultado verdadeiro, se o elemento anterior tiver um resultado negativo. Isso significa que a probabilidade varia conforme os elementos da amostra são extraídos.

As principais aplicações da distribuição hipergeométrica são: controle de qualidade em processos com pequenas populações e cálculo de probabilidades no jogo.

Quanto à função matemática que define a distribuição hipergeométrica, ela consiste em três parâmetros, que são:

– Número de elementos da população (N)

– Tamanho da amostra (m)

– Número de eventos em toda a população com resultado favorável (ou desfavorável) da característica estudada (n).

Fórmulas e equações

A fórmula de distribuição hipergeométrica fornece a probabilidade P de que x casos favoráveis ​​de uma determinada característica ocorram. A maneira de escrevê-lo matematicamente, dependendo dos números combinatórios, é:

Distribuição hipergeométrica: fórmulas, equações, modelo 2

Na expressão anterior N , n e m são parâmetros ex x a própria variável.

A oblação total de P é N.

N úmero de resultados positivos de certo carácter binário sobre a população total é n.

-Quantidade de elementos de amostra é m.

Nesse caso, X é uma variável aleatória que assume o valor x e P (x) indica a probabilidade de ocorrência de x casos favoráveis ​​da característica estudada.

Variáveis ​​estatísticas importantes

Outras variáveis ​​estatísticas para a distribuição hipergeométrica são:

– Média μ = m * n / N

– Variância σ ^ 2 = m * (n / N) * (1-n / N) * (Nm) / (N-1)

– Desvio típico σ, que é a raiz quadrada da variância.

Modelo e propriedades

Para chegar ao modelo de distribuição hipergeométrica, partimos da probabilidade de obter x casos favoráveis ​​em uma amostra de tamanho m.Esta amostra contém elementos que atendem à propriedade em estudo e elementos que não atendem.

Lembre-se de que n representa o número de casos favoráveis ​​na população total de N elementos.Então a probabilidade seria calculada assim:

P (x) = (número de maneiras de obter x número de maneiras com falha) / (# total de maneiras para selecionar)

Expressando o acima exposto na forma de números combinatórios, é atingido o seguinte modelo de distribuição de probabilidade:

Relacionado:  Soma de polinômios, como fazê-lo, exemplos, exercícios

Distribuição hipergeométrica: fórmulas, equações, modelo 2

Principais propriedades da distribuição hipergeométrica

São as seguintes:

– A amostra deve sempre ser pequena, mesmo que a população seja grande.

– Os elementos da amostra são extraídos um por um, sem incorporá-los novamente na população.

– A propriedade a ser estudada é binária, ou seja, pode receber apenas dois valores: 1 ou , verdadeiro ou falso .

Em cada etapa da extração do elemento, a probabilidade muda dependendo dos resultados anteriores.

Aproximação através da distribuição binomial

Outra propriedade da distribuição hipergeométrica é que ela pode ser aproximada pela distribuição binomial, denominada Bi , desde que a população N seja grande e pelo menos 10 vezes maior que a amostra m . Nesse caso, ficaria assim:

P (N, n, m; x) = Bi (m, n / N, x)

Aplicável desde que N seja grande e N> 10m

Exemplos

Exemplo 1

Suponha uma máquina que produz parafusos e os dados acumulados indicam que 1% está com defeito. Em uma caixa de N = 500 parafusos, o número de defeitos será:

n = 500 * 1/100 = 5

Probabilidades através da distribuição hipergeométrica

Suponha que dessa caixa (ou seja, dessa população) coletemos uma amostra de m = 60 parafusos.

A probabilidade de que nenhum parafuso (x = 0) na amostra esteja com defeito é de 52,63%. Este resultado é alcançado usando a função de distribuição hipergeométrica:

P (500, 5, 60; 0) = 0,5263

A probabilidade de que x = 3 parafusos na amostra esteja com defeito é: P (500, 5, 60; 3) = 0,0129.

Por outro lado, a probabilidade de que x = 4 parafusos dos sessenta da amostra estejam com defeito é: P (500, 5, 60; 4) = 0,0008.

Finalmente, a probabilidade de que x = 5 parafusos nessa amostra esteja com defeito é: P (500, 5, 60; 5) = 0.

Mas se você quiser saber a probabilidade de que haja mais de 3 parafusos defeituosos nessa amostra, será necessário obter a probabilidade cumulativa, adicionando:

P (3) + P (4) + P (5) = 0,0129 + 0,0008 + 0 = 0,0137.

Este exemplo é ilustrado na Figura 2, obtido através do uso do software livre GeoGebra , amplamente utilizado em escolas, institutos e universidades.

Distribuição hipergeométrica: fórmulas, equações, modelo 4

Figura 2. Exemplo de distribuição hipergeométrica. Preparado por F. Zapata com GeoGebra.

Exemplo 2

Um baralho de cartas espanholas tem 40 cartas, das quais 10 têm ouro e as 30 restantes não.Suponha que 7 cartas sejam retiradas daquele baralho aleatoriamente, que não retornam ao baralho.

Se X é o número de medalhas de ouro presentes nas 7 cartas sorteadas, a probabilidade de ter ouro em um sorteio de 7 cartas é dada pela distribuição hipergeométrica P (40,10,7; x).

Relacionado:  Teorema Euclidiano: Demonstração, Aplicação e Exercícios

Vejamos o seguinte: para calcular a probabilidade de ter 4 ouro em um sorteio de 7 cartas, usamos a fórmula de distribuição hipergeométrica com os seguintes valores:

Distribuição hipergeométrica: fórmulas, equações, modelo 2

E o resultado é: 4.57% de probabilidade.

Mas se você quiser saber a probabilidade de obter mais de 4 cartões , precisará adicionar:

P (4) + P (5) + P (6) + P (7) = 5,20%

Exercícios resolvidos

O conjunto de exercícios a seguir tem como objetivo ilustrar e assimilar os conceitos apresentados neste artigo. É importante que o leitor tente resolvê-los por conta própria, antes de olhar para a solução.

Exercício 1

Uma fábrica profilática descobriu que de cada 1000 preservativos produzidos por uma determinada máquina, 5 estão com defeito. Para realizar o controle de qualidade, 100 preservativos são colhidos aleatoriamente e o lote é rejeitado se houver pelo menos um ou mais defeitos. Resposta:

a) Qual é a possibilidade de um lote de 100 ser descartado?

b) Esse critério de controle de qualidade é eficiente?

Solução

Nesse caso, números combinatórios muito grandes aparecerão. O cálculo é difícil, a menos que um pacote de software apropriado esteja disponível.

Mas como é uma população grande e a amostra é dez vezes menor que a população total, pode-se usar a aproximação da distribuição hipergeométrica pela distribuição binomial:

P (1000,5,100; x) = Bi (100, 5/1000, x) = Bi (100, 0,005, x) = C (100, x) * 0,005 ^ x (1-0,005) ^ (100-x)

Na expressão anterior, C (100, x) é um número combinatório.A probabilidade de mais de um defeito é calculada da seguinte maneira:

P (x> = 1) = 1 – Bi (0) = 1- 0,6058 = 0,3942

Esta é uma excelente aproximação, se comparada com o valor obtido na aplicação da distribuição hipergeométrica: 0,4102

Pode-se dizer que, com uma probabilidade de 40%, um lote de 100 agentes profiláticos deve ser descartado, o que não é muito eficiente.

Porém, sendo um pouco menos exigente no processo de controle de qualidade e descartando o lote 100 somente se houver dois ou mais defeitos, a probabilidade de descartar o lote cairia para apenas 8%.

Exercício 2

Uma máquina de blocos de plástico funciona de tal maneira que, a cada 10 peças, uma é deformada. Em uma amostra de 5 peças, essa possibilidade é que uma única peça saia com defeito.

Solução

População: N = 10

Número n de defeitos para cada N: n = 1

Tamanho da amostra: m = 5

Distribuição hipergeométrica: fórmulas, equações, modelo 2

P (10, 1, 5; 1) = C (1,1) * C (9,4) / C (10,5) = 1 * 126/252 = 0,5

Portanto, há uma chance de 50% de que em uma amostra de 5, um bloco seja deformado.

Relacionado:  Antecedentes Históricos da Geometria Analítica

Exercício 3

Numa reunião de jovens licenciados, existem 7 senhoras e 6 senhores. Entre as meninas, 4 estudam ciências humanas e 3 ciências. No grupo de meninos, 1 estuda ciências humanas e 5 ciências. Calcule o seguinte:

a) Escolhendo aleatoriamente três meninas: qual a probabilidade de todas elas estudarem ciências humanas?

b) Se três participantes da reunião de amigos forem escolhidos aleatoriamente: Qual é a possibilidade de três deles, independentemente do sexo, estudarem os três ou as três também humanidades?

c) Agora selecione dois amigos aleatórios e chame a variável aleatória de “número daqueles que estudam ciências humanas” x . Entre os dois escolhidos, determine o valor médio ou esperado de x e a variação σ ^ 2.

Solução para

A população é o número total de meninas: N = 7. Quem estuda humanidades é n = 4, do total. A amostra aleatória de meninas será m = 3.

Nesse caso, a probabilidade de todos os três serem estudantes de ciências humanas é dada pela função hipergeométrica:

P (N = 7, n = 4, m = 3, x = 3) = C (4, 3) C (3, 0) / C (7, 3) = 0,1143

Há uma chance de 11,4% de que três meninas escolhidas aleatoriamente estudem humanidades.

Solução b

Os valores a serem usados ​​agora são:

-População: N = 14

– A quantidade que estuda letras é: n = 6 e a

-Tamanho da amostra: m = 3.

-Número de amigos estudando ciências humanas: x

De acordo com isso, x = 3 significa que os três estudam humanidades, mas x = 0 significa que nenhum estuda humanidades. A probabilidade de os três estudarem o mesmo é dada pela soma:

P (14, 6, 3, x = 0) + P (14, 6, 3, x = 3) = 0,0560 + 0,1539 = 0,2099

Então, temos 21% de chance de três participantes da reunião, escolhidos aleatoriamente, estudarem o mesmo.

Solução c

Aqui temos os seguintes valores:

N = 14 população total de amigos, n = 6 número total na população estudando ciências humanas, o tamanho da amostra é m = 2.

A esperança é:

E (x) = m * (n / N) = 2 * (6/14) = 0,8572

E a variação:

σ (x) ^ 2 = m * (n / N) * (1-n / N) * (Nm) / (N-1) = 2 * (6/14) * (1-6 / 14) * ( 14-2) / (14-1) =

= 2 * (6/14) * (1-6 / 14) * (14-2) / (14-1) = 2 * (3/7) * (1-3 / 7) * (12) / ( 13) = 0,4521

Referências

  1. Distribuições de probabilidade discreta. Recuperado de: biplot.usal.es
  2. Estatística e probabilidade. Distribuição hipergeométrica Recuperado em: proyectodescartes.org
  3. CDPYE-UGR. Distribuição hipergeométrica Recuperado de: ugr.es
  4. Geogebra Geogebra clássica, cálculo de probabilidade. Recuperado de geogebra.org
  5. Tente fácil. Exercícios resolvidos de distribuição hipergeométrica. Recuperado de: probafacil.com
  6. Minitab Distribuição hipergeométrica Recuperado de: support.minitab.com
  7. Universidade de Vigo Principais distribuições discretas. Recuperado de: anapg.webs.uvigo.es
  8. Vitutor Estatística e combinatória. Recuperado de: vitutor.net
  9. Weisstein, Eric W. Distribuição Hipergeométrica. Recuperado de: mathworld.wolfram.com
  10. Wikipedia Distribuição hipergeométrica Recuperado de: en.wikipedia.com

Deixe um comentário

Este site usa cookies para lhe proporcionar a melhor experiência de usuário. política de cookies, clique no link para obter mais informações.

ACEPTAR
Aviso de cookies